Drone assessment of habitat selection and breeding success of Gull-billed Tern Gelochelidon nilotica nesting on low-accessibility sites: a case study

Submitted: 28 August 2020
Accepted: 2 November 2020
Published: 20 January 2021
Abstract Views: 1468
PDF: 668
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The use of drones in the study of waterbird breeding biology has received considerable attention in the last years, but very few studies were made along the Mediterranean. We studied habitat selection and breeding success of the Gull-billed Tern Gelochelidon nilotica in two colonies inside fish farms along the Italian Adriatic coastline, using a small, commercial drone. Both colonies were located on small islets surrounded by very shallow water and clayey bottoms, thus being difficult to access. Compared with availability, the Gull-billed Terns selected quadrats higher above the water level, with a higher vegetation cover, which lay farther from the water edge, contain less water, and which are more frequently located in the center of the islands. 147 of 178 clutches (mean clutch size ± SD: 2.61 ± 0.58) hatched 383 chicks (82.5%; 2.15 ± 1.09 chicks per nest), with large differences between the two colonies. Hatching success was 95.0% and 69.1%; the most common cause of egg loss was flooding (97.0%). Nest attendance could easily be ascertained by 30-m above ground level drone-derived imagery. The use of a drone allowed the study of some aspects of the breeding biology of the Gull Billed Tern in two breeding sites where the traditional field approach, i.e. researchers reaching the sites by boat, would have been very difficult, causing unavoidable and prolonged disturbance to the nesting adults.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Afán I., Máñez M. & Díaz-Delgado R., 2018 – Drone Monitoring of Breeding Waterbird Populations: The Case of the Glossy Ibis. Drones, 2(4): 42. DOI: https://doi.org/10.3390/drones2040042
Alessandria G. & Carpegna F., 2019 – Attività trofica di Vulpes vulpes in una zona umida: quali effetti sulla biologia riproduttiva di Ardea purpurea? Research in Ornithology, 89: 27-32. DOI: https://doi.org/10.4081/rio.2019.446
Barati A., Etezadifarb F. & Esfandabad B.S., 2012 − Nest-site selection and hatching success at a mixed-species colony of Black-winged Stilts Himantopus himantopus and Gull-billed Tern Gelochelidon nilotica. Avian Biology Research, 5: 142–146. DOI: https://doi.org/10.3184/175815512X13443576947101
Barr J. R., Green M. C., DeMaso S. J. & Hardy T. B., 2018 – Detectability and visibility biases associated with using a consumer‐grade unmanned aircraft to survey nesting colonial waterbirds. Journal of Field Ornithology, 89: 242-257. DOI: https://doi.org/10.1111/jofo.12258
Blackmer A. L., Ackerman J.T. & Nevitt G.A., 2004 – Effects of investigator disturbance on hatching success and nest-site fidelity in a long-lived seabird, Leach's storm-petrel. Biological Conservation, 116: 141-148. DOI: https://doi.org/10.1016/S0006-3207(03)00185-X
Brandis K. J., Koeltzow N., Ryall S. & Ramp, D. 2014 – Assessing the use of camera traps to measure reproductive success in Straw-necked Ibis breeding colonies. Australian Field Ornithology, 31: 99-106.
Brisson-Curadeau É., Bird D., Burke C., Fifield D.A., Pace P., Sherley R.B. & Elliot K.H., 2017 –Seabird species vary in behavioural response to drone census. Scientific Reports 7:17884. DOI: https://doi.org/10.1038/s41598-017-18202-3
Callaghan, C.T., Brandis K. J., Lyons M. B., Ryall S. & Kingsford R. T., 2018 – A comment on the limitations of UAVS in wildlife research – the example of colonial nesting waterbirds. Journal of Avian Biology, 49: e01825. DOI: https://doi.org/10.1111/jav.01825
Carey M. J., 2009 – The effects of investigator disturbance on Procellariiform seabirds: a review. New Zealand Journal of Zoology, 36: 367-377. DOI: https://doi.org/10.1080/03014220909510161
Chabot, D., Carignan V. & Bird D. M., 2014 – Measuring Habitat Quality for Least Bitterns in a Created Wetland with Use of a Small Unmanned Aircraft. Wetlands, 34: 527-533. DOI: https://doi.org/10.1007/s13157-014-0518-1
Choi H. I., Nam H. K. & Yoon J., 2020 – Testing the potential of lightweight drones as a tool for monitoring the status of colonially breeding Saunders's gulls (Saundersilarus saundersi). The Korean Journal of Ornithology, 27: 10-16. DOI: https://doi.org/10.30980/KJO.2020.6.27.1.10
Cox D. R., 1972 − Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B; 34: 187-220 DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Day J.W., Ibáñez C., Pont D. & Scarton F., 2019 – Status and Sustainability of Mediterranean Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon. In Wolanski E., Day J.W. , Elliott M., Ramachandran R. (eds). Coasts and Estuaries, Elsevier: 237-249. DOI: https://doi.org/10.1016/B978-0-12-814003-1.00014-9
Eyler T. B., Erwin E. R., Stotts D. B. & Hatfield J. S., 1999 − Aspects of Hatching Success and Chick Survival in Gull-billed Terns in Coastal Virginia. Waterbirds, 22: 54-59. DOI: https://doi.org/10.2307/1521993
Fair J. M., & Jones J. (Eds.), 2010 – Guidelines to the use of wild birds in research. Washington, D.C.: Ornithological Council.
Fasola M. & Canova L., 1991 − Colony site selection by eight species of gulls and terns breeding in the “Valli di Comacchio” (Italy). Bollettino di zoologia, 58: 261-266. DOI: https://doi.org/10.1080/11250009109355763
Fasola M. & Canova L., 1992 − Nest Habitat Selection by Eight Syntopic Species of Mediterranean Gulls and Terns. Colonial Waterbirds, 15: 169-178. DOI: https://doi.org/10.2307/1521450
Fiske J. A., Gannon D. & Newman, A. E., 2013 − Effects of repeated investigator handling of Leach's Storm‐Petrel chicks on growth rates and the acute stress response. Journal of Field Ornithology, 84: 425-432. DOI: https://doi.org/10.1111/jofo.12041
Francis R. J., Lyons M. B., Kingsford R. T. & Brandis K. J., 2020 − Counting Mixed Breeding Aggregations of Animal Species Using Drones: Lessons from Waterbirds on Semi-Automation. Remote Sensing, 12: 1185. DOI: https://doi.org/10.3390/rs12071185
Gochfeld M., Burger J., Kirwan G.M. & Garcia E., 2017 − Common Gull-billed Tern (Gelochelidon nilotica). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/node/54012 on 7 October 2017).
Götmark F., 1992 − The effects of investigator disturbance on nesting birds. In: Power, D.M. (Ed.) Current Ornithology, Vol 9., Springer: 63-104. DOI: https://doi.org/10.1007/978-1-4757-9921-7_3
Green R.,1993 − Nomograms for estimating the stage of incubation of wader eggs in the field. Wader Study Group Bull., 69: 107-110.
Grussu M., Scarton F., Verza E. & Valle R.G., 2019 − Long term trends and breeding parameters of Gull-billed Tern Gelochelidon nilotica in three Italian coastal sites. Research in Ornithology, 89. https://doi.org/10.4081/rio.2019.438 DOI: https://doi.org/10.4081/rio.2019.438
Hodgson J. C., Baylis S., Mott R., Herrod A. & Clarke R.H., 2016 − Precision wildlife monitoring using unmanned aerial vehicles. Scientific Reports, 6: 22574. DOI: https://doi.org/10.1038/srep22574
Hodgson J.C. & Koh L.P., 2016 − Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology, 26:404-405. DOI: https://doi.org/10.1016/j.cub.2016.04.001
Hodgson J.C., Mott R., Baylis S.M., Pham T.T., Wotherspoon S., Kilpatrick A.D., Segaran R.R., Reid I., Terauds A. & Koh L.P., 2018 − Drones count wildlife more accurately and precisely than humans. Methods in Ecology and Evolution, 9:1-8. DOI: https://doi.org/10.1101/165019
Ibáñez‐Álamo J. D., Sanllorente O. & Soler M., 2012 −The impact of researcher disturbance on nest predation rates: a meta‐analysis. Ibis, 154: 5-14. DOI: https://doi.org/10.1111/j.1474-919X.2011.01186.x
Kelly K. G., Diamond A. W., Holberton R. L. & Bowser A. K., 2015 − Researcher handling of incubating Atlantic Puffins Fratercula arctica has no effect on reproductive success. Marine Ornithology, 43: 77-82.
Mapes K. L., Pricope N. G., Baxley J. B., Schaale L. E. & Danner R. M., 2020 − Thermal Imaging of Beach-Nesting Bird Habitat with Unmanned Aerial Vehicles: Considerations for Reducing Disturbance and Enhanced Image Accuracy. Drones, 4: 12. DOI: https://doi.org/10.3390/drones4020012
Marinov, M., Pogan T., Doroșencu A., Nichersu I., Alexe V., Trifanov C. & Kiss, J. − 2016. Monitoring the Great White Pelican (Pelecanus onocrotalus Linnaeus, 1758) breeding population using drones in 2016 - the Danube Delta (Romania). Scientific Annals of the Danube Delta Institute, 22: 41-52.
McClelland G. T., Bond A. L., Sardana A. & Glass T., 2016 − Rapid population estimate of a surface-nesting seabird on a remote island using a low-cost unmanned aerial vehicle. Marine Ornithology, 44: 215-220.
Molina K. & Erwin R.E., 2006 – The Distribution and Conservation Status of the Gull-billed Tern (Gelochelidon nilotica) in North America. Waterbirds, 29: 271-295. DOI: https://doi.org/10.1675/1524-4695(2006)29[271:TDACSO]2.0.CO;2
Mulero-Pázmány M., Jenni-Eiermann S., Strebel N., Sattler T., Negro J. J. & Tablado Z., 2017 – Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PloS one, 12 (6), e0178448. DOI: https://doi.org/10.1371/journal.pone.0178448
Nisbet I. C. T., 2000 – Disturbance, Habituation, and Management of Waterbird Colonies. Waterbirds, 23: 312-332.
Pöysä H., J. Kotilainen V., Väänänen M. & Kunnasranta, M., 2018 – Estimating production in ducks: a comparison between ground surveys and unmanned aircraft surveys. European Journal of Wildlife Research, 64:74. https://doi.org/10.1007/s10344-018-1238-2 DOI: https://doi.org/10.1007/s10344-018-1238-2
Reintsma K. M., McGowan P. C., Callahan C., Collier T., Gray D., Sullivan J. D. & Prosser D. J., 2018 – Preliminary Evaluation of Behavioral Response of Nesting Waterbirds to Small Unmanned Aircraft Flight. Waterbirds, 41: 326-332. DOI: https://doi.org/10.1675/063.041.0314
Rexer-Huber K., Walker K.J., Elliott G.P., Baker G.B., Debski I., Jensz K., Sagar P.M., Thompson D.R. & Parker G.C., 2020 – Population trends of light-mantled sooty albatross (Phoebetria palpebrata) at Adams Island and trial of ground, boat, and aerial methods for population estimates. Notornis, 67: 341–355.
Rodway M. S., Montevecchi W. A., & Chardine J. W., 1996 – Effects of investigator disturbance on breeding success of Atlantic Puffins Fratercula arctica. Biological Conservation, 76(3): 311-319. DOI: https://doi.org/10.1016/0006-3207(94)00118-9
Rush G.P., L. E. Clarke, M. Stone, Wood M. J. 2018. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecology and Evolution, 8:12322–12334 DOI: https://doi.org/10.1002/ece3.4495
Sardà-Palomera F., Bota G., Padilla N., Brotons L. & Sardà F., 2017 – Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. Journal of Avian Biology, 48:1273–1280. DOI: https://doi.org/10.1111/jav.01535
Sardà-Palomera, F., Bota G., Viñolo C., Pallarés O., Sazatornil V., Brotons L., Gomáriz S.& Sardà F., 2012 – Fine-scale bird monitoring from light unmanned aircraft systems. Ibis, 154:177-183. DOI: https://doi.org/10.1111/j.1474-919X.2011.01177.x
Sartori A & D’Alterio S., 2016 – Una nuova garzaia nel SIC/ZPS Ex cave di via Villetta di Salzano-Venezia. Lavori Soc. Ven. Sc. Nat, 41: 27-32.
Scarton F. & Valle R., 2020 – Could we assess the hatching success of Pied Avocets (Recurvirostra avosetta) by drone monitoring? A pilot study. Lavori Soc. Ven. Sc. Nat, 45: 139 – 142.
Scarton F., Verza E., Guzzon C., Utmar P., Sgorlon G. & Valle R.G., 2018 – Laro-limicoli (Charadriiformes) nidificanti nel litorale nord Adriatico (Veneto e Friuli Venezia Giulia) nel periodo 2008-2014: consistenza, trend e problematiche di conservazione. RIO - Research in Ornithology, 88: 33-41. DOI: https://doi.org/10.4081/rio.2018.418
Sokal R.R. & Rohlf F.J., 1981 – Biometry, W. H. Freeman. New York, U.S.A.
Uher-Koch B. D., Schmutz J. A. & Wright K. G., 2015 – Nest visits and capture events affect breeding success of Yellow-billed and Pacific loons. The Condor: Ornithological Applications, 117: 121-129. DOI: https://doi.org/10.1650/CONDOR-14-102.1
Valle R.G. & Scarton F., 2018 – Uso dei droni nel censimento degli uccelli acquatici nidificanti nel nord Adriatico. Bollettino del Museo di Storia Naturale di Venezia, 69: 69–75.
Valle R. G., & Scarton F., 2019a – Effectiveness, efficiency, and safety of censusing Eurasian Oystercatchers Haematopus ostralegus by unmanned aircraft. Marine Ornithology, 47: 87-93.
Valle R. G. & Scarton F., 2019b – Drones improve effectiveness and reduce disturbance of censusing Common Redshanks Tringa totanus breeding on salt marshes. Ardea, 107: 275-282. DOI: https://doi.org/10.5253/arde.v107i3.a3
Windhoffer E. D., Owen T. M., Liechty J. S., Minor A. K., Curtiss D. K., Nepshinsky M., & Pierce A. R., 2017 – Variability in Gull-Billed Tern (Gelochelidon nilotica) Breeding Parameters at the Isles Dernieres Barrier Islands Refuge, Louisiana, USA. Waterbirds, 40 (4): 390-396. DOI: https://doi.org/10.1675/063.040.0410
Wu F, Lei W, Lloyd H & Zhang Z., 2020. Predictors of Gull-billed tern (Gelochelidon nilotica) nest survival in artificial coastal saltpans, Bohai Bay, China. PeerJ 8: e10054 http://doi.org/10.7717/peerj.10054 DOI: https://doi.org/10.7717/peerj.10054
Zbyryt A., 2019 – Numbers and distribution of breeding population of the Great Egret Ardea alba in Poland. Ornis Polonica, 60: 235–244.

How to Cite

Scarton, F., & Valle, R. (2021). Drone assessment of habitat selection and breeding success of Gull-billed Tern <em>Gelochelidon nilotica</em> nesting on low-accessibility sites: a case study. Rivista Italiana Di Ornitologia, 90(2). https://doi.org/10.4081/rio.2020.475

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.