Moss flora of two Alpine glacial and periglacial sites on crystalline and carbonatic bedrock

Submitted: 18 July 2024
Accepted: 22 October 2024
Published: 3 December 2024
Abstract Views: 9
PDF: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mosses are important pioneer organisms in cold and wet habitats, such as glacial and periglacial habitats of the European Alps. These habitats include glaciers and rock glaciers, respectively, and are of increasing interest for being directly threatened by climate change and for hosting a specialized and often rare and endemic biodiversity (EU Habitats Directive, habitat code 8340, Natura 2000 network). However, the moss flora of rock glaciers was never studied, and, in general, few studies were performed specifically on mosses of ice-related landforms in the European Alps. The aim of this work is to give a first comparative checklist from two Alpine sites, the rock glacier of Lazaunkar (Bolzano, Italy) and the debris-cover glacier and rock glacier of Cima Uomo (Trento, Italy), with different bedrock compositions. Threatened species (according to IUCN red lists) and extremely specialized high-elevation species were found in both sites, but mostly on crystalline bedrock in Lazaunkar. This biodiversity is the most threatened by climate change. These findings highlight how these habitats still need to be studied and monitored in the future.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Aleffi M., Cogoni A. & Poponessi P., 2023 – An updated checklist of the bryophytes of Italy, including the Republic of San Marino and Vatican City State, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 157 (6): 1259-1307, DOI: 10.1080/11263504.2023.2284136 DOI: https://doi.org/10.1080/11263504.2023.2284136
Belkina O. A. & Vilnet A. A, 2015 – Some aspects of the moss population development on the Svalbard glaciers. Czech Polar Reports, 5 (2): 160-175. DOI: 10.5817/CPR2015-2-14 DOI: https://doi.org/10.5817/CPR2015-2-14
Brighenti S., Hotaling S., Finn D., Fountain A., Hayashi M., Herbst D., Saros J., Tronstad L. & Millar C., 2021 — Rock glacier and related cold rocky landforms: overlooked climate refugia for mountain biodiversity. Global Change Biology, 27 (8): 1504–1517. Doi: 10.32942/osf.io/84ydq DOI: https://doi.org/10.1111/gcb.15510
Burga C. A., 1999 – Vegetation development on the glacier forefield Morteratsch (Switzerland). Applied Vegetation Science, 2: 17-24 DOI: https://doi.org/10.2307/1478877
Callaghan D. A. & Gadsdon S., 2023 – How basic bryophyte recording provides information on major changes in key conservation localities: a case study of Epping Forest, England, an internationally significant site. Journal of Bryology, 45 (2): 159–171. https://doi.org/10.1080/03736687.2023.2229189 DOI: https://doi.org/10.1080/03736687.2023.2229189
Carbognani M., Petraglia A. & Tomaselli M., 2012 — Influence of snowmelt time on species richness, density and production in a late snowbed community. Acta Oecologica, 43: 113-120. DOI: https://doi.org/10.1016/j.actao.2012.06.003
Cauvy-Fraunié S. & Dangles O., 2019 – A global synthesis of biodiversity responses to glacier retreat. Nature Ecology & Evolution, 3: 1675–1685. https://doi.org/10.1038/s41559-019-1042-8 DOI: https://doi.org/10.1038/s41559-019-1042-8
Cortini Pedrotti C., 2001 – Flora dei muschi d’Italia. 1a parte. Antonio Delfino Editore, Roma.
Cortini Pedrotti C., 2005 – Flora dei muschi d’Italia. 2a parte. Antonio Delfino Editore, Roma.
Coulson S.J. & Midgley N. G., 2012 – The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland. Polar Biology, 35: 1651–1658 https://doi.org/10.1007/s00300-012-1205-4 DOI: https://doi.org/10.1007/s00300-012-1205-4
Council Directive 92/43/EEC., 1992 – Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. https:// eur- lex. europa. eu/ legal- conte nt/ EN/ TXT/ HTML/?uri= CELEX: 31992 L0043 & from= EN Accessed 17 July 2024
Crosta A., Valle B., Caccianiga M., Gobbi M., Ficetola F. G., Pittino F., Franzetti A., Azzoni R. S., Lencioni V., Senese A., Corlatti L., Buda J., Poniecka E., Novotná Jaroměřská T., Zawierucha K. & Ambrosini R. 2024 — Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biological Review. https://doi.org/10.1111/brv.13138 DOI: https://doi.org/10.1111/brv.13138
Eldridge D. J., Guirado E., Reich, P. B. Ochoa-Hueso R., Berdugo M., Sáez-Sandino T., Blanco-Pastor J. L., Tedersoo L., Plaza C., Ding J., Sun W., Mamet S., Cui H., He J-Z, Hu H-W, Sokoya B., Abades S., Alfaro F., Bamigboye A. L., Bastida F. L., de los Ríos A., Durán J., Gaitan J. J., Guerra C. A., Grebenc T., Illán J. G., Liu Y-R, Makhalanyane T. P., Mallen-Cooper M., Molina-Montenegro M. A., Moreno J. L., Nahberger T. U., Peñaloza-Bojacá G. F., Picó S., Rey A., Rodríguez A., Siebe C., Teixido A. L., Torres-Díaz C., Trivedi P., Wang J., Wang L., Wang J., Yang T., Zaady E., Zhou X., Zhou X-Q., Zhou G., Liu S. & Delgado-Baquerizo M., 2023 – The global contribution of soil mosses to ecosystem services. Nature Geosciences, 16: 430–438. https://doi.org/10.1038/s41561-023-01170-x DOI: https://doi.org/10.1038/s41561-023-01170-x
Fickert T., Friend D., Gruninger F., Molnia B. & Richter M., 2007 – Did debris-covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces. Arctic Antarctic and Alpine Research, 39: 245–257. https:// doi. org/ 10. 1657/ 1523- 0430(2007) 39[245: DDGSAP] 2.0. CO;2 DOI: https://doi.org/10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2
Fojcik B. & Stebel A., 2014 — The diversity of moss flora of Katowice town (S Poland). Cryptogamie, Bryologie, 4: 373-385. https://doi.org/10.7872/cryb.v35.iss4.2014.373 DOI: https://doi.org/10.7872/cryb.v35.iss4.2014.373
Fudali E. & Kučera J., 2002 — Andreaea nivalis (Andraeaceae, Musci) New to the Larlonosze Mts. (SW Poland). Polish Botanical Journal, 47 (1): 45–47
Jenīík J., 1997 —Anemo-orographic systems in the Hercynian Mts and their effects on biodiversity. Acta Univ. Wratisl. 1950, Prace Instytutu Geograficznego, Ser. C. Meteorologia i Klimatologia, 4: 9–21
Gärtner G., 2010 — Zur Kryptogamenflora im Rotmoostal. Glaziale und periglaziale Lebensräume im Raum Obergurgl, Alpine Forschungsstelle Obergurgl, 1: 145-154.
Geffert J. L., Frahm J-P., Barthlott W. & Mutke J., 2013 —Global moss diversity: spatial and taxonomic patterns of species richness. Journal of Bryology, 35(1): 1-11 DOI 10.1179/1743282012Y.0000000038 DOI: https://doi.org/10.1179/1743282012Y.0000000038
Gobbi M., Ambrosini R., Casarotto C., Diolaiuti G., Ficetola G.F., Lencioni V., Seppi R., Smiraglia C., Tampucci D., Valle B. & Caccianiga M., 2021 – Vanishing permanent glaciers: climate change is threatening a European Union habitat (Code 8340) and its poorly known biodiversity. Biodiversity Conservation, 30: 2267–2276. https://doi.org/10.1007/s10531-021-02185-9 DOI: https://doi.org/10.1007/s10531-021-02185-9
Grims F., 1982 – Über die besiedlung der vorfelder einiger dachsteingletscher (Oberösterreich). Stapfia, 10: 203 — 233
Guerra J., Cano M. J., Martìnez M., Jiménez J. A. & Gallego M. T., 2021 — Schistidium apocarpum complex (Grimmiaceae, Bryophyta) in the Baetic Mountain Ranges, southern Iberian Peninsula. Cryptogamie, Bryologie 42 (5): 45-71. https://doi.org/10.5252/cryptogamie-bryologie2021v42a5. DOI: https://doi.org/10.5252/cryptogamie-bryologie2021v42a5
Hågvar S. & Pedersen A., 2015 – Food choice of invertebrates during early glacier foreland succession. Arctic, Antarctic, and Alpine Research, 47 (3): 561–572. http://www.jstor.org/stable/24551784 DOI: https://doi.org/10.1657/AAAR0014-046
Hågvar S., Gobbi M., Kaufmann R., Ingimarsdóttir M., Caccianiga M., Valle B., Pantini P., Fanciulli P. P. & Vater A., 2020 – Ecosystem birth near melting glaciers: A review on the pioneer role of ground-dwelling arthropods. Insects 11 (9). 10.3390/insects11090644 DOI: https://doi.org/10.3390/insects11090644
Hodgetts N., Cálix, M., Englefield E., Fettes N., García Criado M., Patin L., Nieto A., Bergamini A., Bisang I., Baisheva E., Campisi P., Cogoni A., Hallingbäck T.,Konstantinova N., Lockhart N., Sabovljevic M., Schnyder N., Schröck C., Sérgio C., Sim Sim M., Vrba, J. Ferreira C.C., Afonina O., Blockeel T., Blom H., Caspari S., Gabriel R., Garcia C., Garilleti R., González Mancebo J., Goldberg I., Hedenäs L., Holyoak D., Hugonnot V., Huttunen S., Ignatov M., Ignatova E., Infante M., Juutinen R., Kiebacher T., Köckinger H., Kučera J., Lönnell N., Lüth M., Martins A., Maslovsky O., Papp B., Porley R., Rothero G., Söderström L., Ştefǎnuţ S., Syrjänen K., Untereiner A., Váňa J. Ɨ, Vanderpoorten A., Vellak K., Aleffi M., Bates J., Bell N., Brugués M., Cronberg N., Denyer J., Duckett J., During H.J., Enroth J., Fedosov V., Flatberg K.-I., Ganeva A., Gorski P., Gunnarsson U., Hassel K., Hespanhol H., Hill M., Hodd R., Hylander K., Ingerpuu N., Laaka-Lindberg S., Lara F., Mazimpaka V., Mežaka A., Müller F., Orgaz J.D., Patiño J. Pilkington S., Puche F., Ros R. M., Rumsey F., Segarra-Moragues J. G., Seneca A., Stebel A., Virtanen R., Weibull H., Wilbraham J. & Żarnowiec J. 2019 – A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts. Brussels, Belgium: IUCN.
Hodgetts N. G., Söderström L., Blockeel T. L., Caspari S., Ignatov M. S., Konstantinova N. A., Lockhart N., Papp B., Schröck C., Sim-Sim M., Bell D., Bell N.E., Blom H.H., Bruggeman-Nannenga M. A., Brugués M., Enroth J., Flatberg K. I., Garilleti R., Hedenäs L., Holyoak D. T., Hugonnot V., Kariyawasam I., Köckinger H., Kučera J., Lara F. & Porley R. D., 2020 — An Annotated Checklist of Bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology, 42 (1): 1–116. doi:10.1080/03736687.2019.1694329. DOI: https://doi.org/10.1080/03736687.2019.1694329
Hyvönen S. & Hyvönen J., 1985 — Contributions to the lichen and bryophyte flora of Aletschwald Nature Reserve and its surroundings (Valais, Switzerland). Bulletin de la Murithienne, 103: 127-168
Ignatova E. A., Blom H. H., Goryunov D. V. & Milyutina I. A., 2009 –On the genus Schistidium (Grimmiaceae, Musci) in Russia. Arctoa, 19: 195-233 DOI: https://doi.org/10.15298/arctoa.19.19
Jenīík J., 1997 —Anemo-orographic systems in the Hercynian Mts and their effects on biodiversity. Acta Univ. Wratisl. 1950, Prace Instytutu Geograficznego, Ser. C. Meteorologia i Klimatologia, 4: 9–21
Krainer K., Bressan D., Dietre B., Haas J., Hajdas I., Lang K., Mair V., Nickus U., Reidl D., Thies H., Tonidandel D., 2015 — A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, 83 (2): 324–335. Doi: 10.1016/j.yqres.2014.12.005 DOI: https://doi.org/10.1016/j.yqres.2014.12.005
Lett S., Nilsson M. C., Wardle D. A. & Dorrepaal E., 2017 — Bryophyte traits explain climate–warming effects on tree seedling establishment. Journal of Ecology, 105: 496–506. DOI: https://doi.org/10.1111/1365-2745.12688
Murray B., 1988 — The genus Andreaea in Britain and Ireland. Journal of Bryology, 15: 17–82. DOI: https://doi.org/10.1179/jbr.1988.15.1.17
Puglisi M. & Cataldo D., 2019 —A comparative study on the bryophyte and lichen flora for monitoring the conservation status of protected areas of Sicily (Italy) Nova Hedwigia, 109 (3-4): 321 – 343. DOI: 10.1127/nova_hedwigia/2019/0550 DOI: https://doi.org/10.1127/nova_hedwigia/2019/0550
Puglisi M., Campisi P., Aleffi M., Bacilliere G., Bonini I., Cogoni A., Dia M. G., Miserere L., Privitera M., Tiburtini M. & Poponessi S., 2024 —Red-list of Italian bryophytes. 2. Mosses. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 158 (5): 1031–1056. https://doi.org/10.1080/11263504.2024.2386330 DOI: https://doi.org/10.1080/11263504.2024.2386330
Rusek J., 2001 – Microhabitats of Collembola (Insecta: Entognatha) in beech and spruce forests and their influence on biodiversity, European Journal of Soil Biology, 37 (4): 237-244, https://doi.org/10.1016/S1164-5563(01)01090-1. DOI: https://doi.org/10.1016/S1164-5563(01)01090-1
Schultze-Motel W., 1970 — Monographie der Laubmoosgattung Andreaea. I. Die costaten Arten. Willdenowia, 6: 25–110.
Seppi R., Zanoner T., Carton A., Bondesan A., Francese R., Carturan L., Zumiani M., Giorgi M. & Ninfo A., 2015 — Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps). Geomorphology, 228: 71-86. https://doi.org/10.1016/j.geomorph.2014.08.025 DOI: https://doi.org/10.1016/j.geomorph.2014.08.025
Valle B., di Musciano M., Gobbi M., Bonelli M., Colonnelli E., Gardini G., Migliorini M., Pantini P., Zanetti A., Berrilli E., Frattaroli A. R., Fugazza D., Invernizzi A. & Caccianiga M., 2022 – Biodiversity and ecology of plants and arthropods on the last preserved glacier of the Apennines mountain chain (Italy). The Holocene, 32 (8): 853-865. DOI: https://doi.org/10.1177/09596836221096292
Valle B., Ligi O., Moscatelli A., Onelli E. & Caccianiga M, in press – Bryophyte colonization on an Alpine recently deglaciated glacier foreland (European Alps). Journal of Bryology.
Vanderpoorten A., Papp B. & Gradstein R., 2010 – Sampling of bryophytes. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vandespiegel D, editors. Manual on field recording techniques and protocols for all taxa biodiversity inventories Vol 8. Belgium: ABC taxa.
Wheeler J. A., Hermanutz L. & Marino P. M., 2011 – Feathermoss seedbeds facilitate black spruce seedling recruitment in the forest-tundra ecotone (Labrador, Canada). Oikos, 120 (8): 1263–1271. https://doi.org/10.1111/j.1600-0706.2010.18966.x. DOI: https://doi.org/10.1111/j.1600-0706.2010.18966.x

How to Cite

Valle, B., Ligi, O., Invernizzi, A., Fiaschi, T., Gobbi, M., & Caccianiga, M. (2024). Moss flora of two Alpine glacial and periglacial sites on crystalline and carbonatic bedrock. Natural History Sciences. https://doi.org/10.4081/nhs.2024.809