Tolerance of Capsicum frutescens L. (Solanales: Solanaceae) to the duration of waterlogging and impact on the post-waterlogging and recovery periods


Submitted: 22 July 2022
Accepted: 19 July 2023
Published: 5 October 2023
Abstract Views: 343
PDF: 358
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Endang Saptiningsih Department of Biology, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia.
  • Sri Darmanti Plant Structure and Function Laboratory, Diponegoro University, Semarang, Indonesia.
  • Nintya Setiari Plant Structure and Function Laboratory, Diponegoro University, Semarang, Indonesia.

Waterlogging is a shallow flooding in the area of the root and in some parts of the shoot. It is one of the most common types of flooding in agricultural areas. The duration of waterlogging affects plant growth and yield in response to stress by interacting with their ability to adapt. Plant adaptability during waterlogging affects their resilience to post-waterlogging and recovery conditions. In this research, we examined the tolerance of Capsicum frutescens to short (1 day), medium (3 days) and long (10 days) duration of waterlogging, as well as its implications on post-waterlogging, recovery, reproductive phase and harvest. Adaptability and growth rates were used to determine plant tolerance to waterlogging stress. The percentage of wilting, root damage, survival, stomatal response, formation of hypertrophic lenticels, adventitious roots, photosynthetic pigment content, height, leaf number, plant biomass, flower number, and fruit fresh weight were used to measure adaptability and growth. The results showed that a longer duration of waterlogging increased root damage and decreased plant growth, affecting photosynthetic pigment content, leaf number, root and shoot biomass. The ability to regulate the stomata opening, the formation of hypertrophic lenticels and adventitious roots enabled plants not to wilt permanently, surviving post-waterlogging conditions and during recovery, growing during reproductive phase and producing yields. The critical duration of waterlogging at the beginning of the vegetative phase occurred at 10 days, and pepper suffered a drastic reduction in vegetative and reproductive growth and yields. The maintenance of the root system and the development of adaptive mechanisms increased plant survival, thereby affecting yield.


Ahmed F., Rafii M. Y., Ismail M. R., Juraimi A. S., Rahim H. A., Asfaliza R. & Latif M. A., 2013 – Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 963525. DOI: https://doi.org/10.1155/2013/963525

Al Habib, I. M., Hartatik, S., Ridwani, S., & Avivi, S., 2022 – Recovery of three different varieties of tobacco (Nicotiana tabacum L.) under waterlogging stress. Australian Journal of Crop Sciences, 16 (7): 974-981. <https://doi.org/10.21475/ajcs.22.16.07.p3645> DOI: https://doi.org/10.21475/ajcs.22.16.07.p3645

Anee T. I., Nahar K., Rahman A., Mahmud J. A., Bhuiyan T. F., Alam M. U., Fujita M. & Hasanuzzaman M., 2019 – Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants, 8 (7), 196. <https://doi.org/10.3390/plants8070196> DOI: https://doi.org/10.3390/plants8070196

Bansal R. & Srivastava J. P., 2012 – Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiologiaeplantarum, 34 (2): 515-522. <https://doi.org/10.1007/s11738-011-0848-z> DOI: https://doi.org/10.1007/s11738-011-0848-z

Bansal R., Sharma S., Tripathi K. & Kumar A., 2019 – Waterlogging tolerance in black gram [Vigna mungo (L.) Hepper] is associated with chlorophyll content and membrane integrity. Indian Journal of Biochemistry and Biophysics, 56 (1): 81-85.

Bashar K. K., 2018 – Hormone dependent survival mechanisms of plants during post-waterlogging stress. Plant Signaling & Behavior, 13 (10), e1529522. DOI: https://doi.org/10.1080/15592324.2018.1529522

Bashar K. K., Tareq M., Amin M., Honi U., Tahjib-Ul-Arif M., Sadat M. & Hossen Q. M., 2019 – Phytohormone-mediated stomatal response, escape and quiescence strategies in plants under flooding stress. Agronomy, 9 (2), 43. <https://doi.org/10.3390/agronomy9020043> DOI: https://doi.org/10.3390/agronomy9020043

Board J. E., 2008 – Waterlogging effects on plant nutrient concentrations in soybean. Journal of Plant Nutrition, 31 (5): 828-838. <https://doi.org/10.1080/01904160802043122> DOI: https://doi.org/10.1080/01904160802043122

Candan N. & Tarhan L., 2012 – Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation. Environmental and Experimental Botany, 75: 83-88. <https://doi.org/10.1016/j.envexpbot.2011.08.014> DOI: https://doi.org/10.1016/j.envexpbot.2011.08.014

Chávez-Arias C. C., Gómez-Caro S. & Restrepo-Díaz H., 2019 – Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy, 9 (5), 213. <https://doi.org/10.3390/agronomy9050213> DOI: https://doi.org/10.3390/agronomy9050213

Da-Silva C. J. & do Amarante L., 2020 – Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environmental and Experimental Botany, 180, 104242. <https://doi.org/10.1016/j.envexpbot.2020.104242> DOI: https://doi.org/10.1016/j.envexpbot.2020.104242

de San Celedonio R. P., Abeledo L. G. & Miralles D. J., 2014 – Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant and Soil, 378 (1-2): 265-277. <https://doi.org/10.1007/s11104-014-2028-6> DOI: https://doi.org/10.1007/s11104-014-2028-6

Enkhbat G., Ryan M. H., Foster K. J., Nichols P. G., Kotula L., Hamblin A., Inukai Y. & Erskine W., 2021 – Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses. Plant and Soil, 464 (1): 467-487. <https://doi.org/10.1007/s11104-021-04959-0> DOI: https://doi.org/10.1007/s11104-021-04959-0

Fujita S., Noguchi K. & Tange T., 2020 – Root responses of five Japanese afforestation species to waterlogging. Forests, 11 (5), 552. <https://doi.org/10.3390/f11050552> DOI: https://doi.org/10.3390/f11050552

Fukao T., Barrera-Figueroa B. E., Juntawong P. & Peña-Castro J. M., 2019 – Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Frontiers in Plant Science, 10, 340. <https://doi.org/10.3389/fpls.2019.00340> DOI: https://doi.org/10.3389/fpls.2019.00340

Hasanuzzaman M., Mahmud J. A., Nahar K., Anee T. I., Inafuku M., Oku H. & Fujita M., 2017 – Responses, adaptation, and ROS metabolism in plants exposed to waterlogging stress. In: Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Khan M. I. R. & Khan N. A. (eds.). Springer, Singapore: 257-281. DOI: https://doi.org/10.1007/978-981-10-5254-5_10

Herzog M., Striker G. G., Colmer T. D. & Pedersen O., 2016 – Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology. Plant Cell and Environment, 39 (5): 1068-1086. <https://doi.org/10.1111/pce.12676> DOI: https://doi.org/10.1111/pce.12676

Hingane A. J., Saxena K. B., Patil S. B., Sultana R., Srikanth S., Mallikarjuna N., Srikanth S., Vijaykumar R. & Kumar C. V. S., 2015 – Mechanism of water-logging tolerance in pigeonpea. Indian Journal of Genetics and Plant Breeding, 75 (2): 208-214. <https://doi.org/10.5958/09756906.2015.00032.2> DOI: https://doi.org/10.5958/0975-6906.2015.00032.2

Honda S., Ohkubo S., San N. S., Nakkasame A., Tomisawa K., Katsura K., Ookawa T., Nagano A. J. & Adachi S., 2021 – Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Scientific Reports, 11, 7579. <https://doi.org/10.1038/s41598-021-86983-9> DOI: https://doi.org/10.1038/s41598-021-86983-9

Insani N. N., Darmanti S. & Saptiningsih E., 2021 – Pengaruh durasi penggenangan terhadap pertumbuhan vegetatif dan waktu berbunga cabai merah keriting Capsicum annum (L.) varietas Jacko. Buletin Anatomi dan Fisiologi, 6 (2): 104-114. DOI: https://doi.org/10.14710/baf.6.2.2021.104-114

Jia W., Ma M., Chen J. & Wu S., 2021 – Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 22 (3), 1088. <https://doi.org/10.3390/ijms22031088> DOI: https://doi.org/10.3390/ijms22031088

Jaiphong T., Tominaga J., Watanabe K., Nakabaru M., Takaragawa H., Suwa R., Ueno M. & Kawamitsu Y., 2016 – Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science, 19 (3): 427-437. <https://doi.org/10.1080/1343943X.2016.1159520> DOI: https://doi.org/10.1080/1343943X.2016.1159520

Junglos F. S., Junglos M. S., Dresc D. M., Bento L. F., Santiago E. F., Mussury R. M. & Scalon S. d. P. Q., 2018 – Morphophysiological responses of Ormosia arborea (Fabaceae) seedlings under flooding and post-flooding conditions. Australian Journal of Botany, 66 (7): 489-499. <https://doi.org/10.1071/BT17206> DOI: https://doi.org/10.1071/BT17206

Kaur G., Singh G., Motavalli P. P., Nelson K. A., Orlowski J. M. & Golden B. R., 2020 – Impacts and management strategies for crop production in waterlogged or flooded soils, A review. Agronomy Journal, 112 (3): 1475-1501. <https://doi.org/10.1002/agj2.20093> DOI: https://doi.org/10.1002/agj2.20093

Kim H. J., Lin M. Y. & Mitchell C. A., 2019 – Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany, 157: 228-240. <https://doi.org/10.1016/j.envexpbot.2018.10.019> DOI: https://doi.org/10.1016/j.envexpbot.2018.10.019

Kyu K. L., Malik A. I., Colmer T. D., Siddique K. H. & Erskine W., 2021 – Response of mungbean (cvs. Celera II-AU and Jade-AU) and blackgram (cv. Onyx-AU) to transient waterlogging. Frontiers in Plant Science, 12, 709102. <https://doi.org/10.3389/fpls.2021.709102> DOI: https://doi.org/10.3389/fpls.2021.709102

Lal M., Kumari A. & Sheokand S., 2019 – Reactive oxygen species, reactive nitrogen species and oxidative metabolism under waterlogging stress. In: Reactive oxygen, nitrogen and sulfur species in plants. Hasanuzzaman M., Fotopoulos V., Nahar K. & Fujita M. (eds.). Wiley Online Library, US: 777-812. DOI: https://doi.org/10.1002/9781119468677.ch34

Liu M. & Zwiazek J. J., 2022 – Oxidative stress impedes recovery of canola (Brassica napus) plants from waterlogging by inhibiting aquaporin-mediated root water transport. Environmental and Experimental Botany, 200, 104931. <https://doi.org/10.1016/j.envexpbot.2022.104931> DOI: https://doi.org/10.1016/j.envexpbot.2022.104931

Liu C., Zhao X., Yan J., Yuan Z. & Gu M., 2020 – Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy, 10 (1): 27. <https://doi.org/10.3390/agronomy10010027> DOI: https://doi.org/10.3390/agronomy10010027

Liu K., Harrison M. T., Shabala S., Meinke H., Ahmed I., Zhang Y., Tian X. & Zhou M., 2020 – The state of the art in modeling waterlogging impacts on plants: what do we know and what do we need to know. Earth’s Future, 8 (12): e2020EF001801. <https://doi.org/10.1029/2020EF001801> DOI: https://doi.org/10.1029/2020EF001801

Liu Z., Cheng R., Xiao W., Guo Q. & Wang N., 2014 – Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PloS One, 9 (9), e107636. <https://doi.org/10.1371/journal.pone.0107636> DOI: https://doi.org/10.1371/journal.pone.0107636

Lokstein H., Renger G. & Götze J. P., 2021 – Photosynthetic light-harvesting (antenna) complexes—structures and functions. Molecules, 26 (11): 3378. <https://doi.org/10.3390/molecules26113378> DOI: https://doi.org/10.3390/molecules26113378

Luan H., Guo B., Pan Y., Lv C., Shen H. & Xu R., 2018 – Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regulation, 85: 399-409. <https://doi.org/10.1007/s10725-018-0401-9> DOI: https://doi.org/10.1007/s10725-018-0401-9

Manik S. M., Pengilley G., Dean G., Field B., Shabala S. & Zhou M., 2019 – Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Frontiers in Plant Science, 10, 140. <https://doi.org/10.3389/fpls.2019.00140> DOI: https://doi.org/10.3389/fpls.2019.00140

Martínez-Acosta E., Lagunes-Espinoza L. C., Castelán-Estrada M., Lara-Viveros F. & Trejo C., 2020 – Leaf gas exchange and growth of Capsicum annuum var. glabriusculum under conditions of flooding and water deficit. Photosynthetica, 58 (3): 873-880. <https://doi.org/10.32615/ps.2020.032> DOI: https://doi.org/10.32615/ps.2020.032

McDaniel V., Skaggs R. W. & Negm L. M., 2016 – Injury and recovery of maize roots affected by flooding. Applied Engineering in Agriculture, 32 (5): 627-638. <https://doi.org/10.13031/aea.32.11633> DOI: https://doi.org/10.13031/aea.32.11633

Mohanty A., Panda R. K., Rout G. R., Muduli K. C. & Tripathy P., 2020 – Effect of short term waterlogging on plant morphology, chlorophyll and carotenoid content of tomato (Solanum lycopersicum L. Mill) during vegetative stage. International Journal of Current Microbiology and Applied Sciences, 9 (7): 920-935. <https://doi.org/10.20546/ijcmas.2020.907.107> DOI: https://doi.org/10.20546/ijcmas.2020.907.107

Olorunwa O. J., Adhikari B., Shi A. & Barickman T. C., 2022 – Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Plant Science, 315, 111136. <https://doi.org/10.1016/j.plantsci.2021.111136> DOI: https://doi.org/10.1016/j.plantsci.2021.111136

Ou L. J. & Zou X. X., 2012 – The photosynthetic stress responses of five pepper species are consistent with their genetic variability. Photosynthetica, 50 (1): 49-55. <https://doi.org/10.1007/s11099-012-0008-8> DOI: https://doi.org/10.1007/s11099-012-0008-8

Ou L. J., Dai X. Z., Zhang Z. Q. & Zou X. X., 2011 – Responses of pepper to waterlogging stress. Photosynthetica, 49 (3): 339-345. DOI: https://doi.org/10.1007/s11099-011-0043-x

Pan J., Sharif R., Xu X. & Chen X., 2021 – Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 11, 627331. <https://doi.org/10.3389/fpls.2020.627331> DOI: https://doi.org/10.3389/fpls.2020.627331

Patel P. K., Singh A. K., Tripathi N., Yadav D. & Hemantaranjan A., 2014 – Flooding: abiotic constraint limiting vegetable productivity. Advances in Plants and Agriculture Research, 1 (3): 96-103. <https://doi.org/10.15406/apar.2014.01.00016> DOI: https://doi.org/10.15406/apar.2014.01.00016

PengY.Q., ZhuJ., LiW.J., GaoW., ShenR.Y. & MengL.J.,2020 – Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Scientia Horticulturae, 261, 108977. <https://doi.org/10.1016/j.scienta.2019.108977> DOI: https://doi.org/10.1016/j.scienta.2019.108977

Ploschuk R. A., Grimoldi A. A., Ploschuk E. L. & Striker G. G., 2017 – Growth during recovery evidences the waterlogging tolerance of forage grasses. Crop and Pasture Science, 68 (6): 574-582. <https://doi.org/10.1071/CP17137> DOI: https://doi.org/10.1071/CP17137

Ploschuk R. A., Miralles D. J., Colmer T. D., Ploschuk E. L. & Striker G. G., 2018 – Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Frontiers in Plant Science, 9, 1863. <https://doi.org/10.3389/fpls.2018.01863> DOI: https://doi.org/10.3389/fpls.2018.01863

Ploschuk R. A., Miralles D. J. & Striker G. G., 2022 – A quantitative review of soybean responses to waterlogging: agronomical, morpho-physiological and anatomical traits of tolerance. Plant and Soil, 475: 237-252. <https://doi.org/10.1007/s11104-022-05364-x> DOI: https://doi.org/10.1007/s11104-022-05364-x

Prasad B. V. G. & Chakravorty S. 2015 – Effects of climate change on vegetable cultivation-a review. Nature Environment and Pollution Technology, 14 (4): 923-929.

Purnobasuki H., Nurhidayati T., Hariyanto S. & Wahyuni N. K., 2021 – Response of Nicotiana tabacum plant under waterlogging stress during vegetative stage. Ecology, Environment and Conservation Paper, 27 (Special issue): 31-36.

Raras R. P., Saptiningsih E. & Haryanti S., 2021 – Respon tanaman cabai rawit (Capsicum frutescens L.) varietas pelita F1 terhadap Penggenangan. [Response of cayenne pepper (Capsicum frutescens L.) pelita F1 variety to flooding]. Buletin Anatomi dan Fisiologi, 6 (1): 56-65. DOI: https://doi.org/10.14710/baf.6.1.2021.56-65

Ren B., Zhang J., Dong S., Liu P. & Zhao B., 2016 – Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS One, 11 (9), e0161424. <https://doi.org/10.1371/journal.pone.0161424> DOI: https://doi.org/10.1371/journal.pone.0161424

Rustinsyah R., Prasetyo R. A. & Adib M., 2021 – Social capital for flood disaster management: Case study of flooding in a village of Bengawan Solo Riverbank, Tuban, East Java Province. International Journal of Disaster Risk Reduction, 52, 101963. <https://doi.org/10.1016/j.ijdrr.2020.101963> DOI: https://doi.org/10.1016/j.ijdrr.2020.101963

Safavi-Rizi V., Herde M. & Stöhr C., 2020 – RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Scientific Reports, 10, 1692. <https://doi.org/10.1038/s41598020-57884-0> DOI: https://doi.org/10.1038/s41598-020-57884-0

Sakuntaladewi N., Rachmanadi D., Mendham D., Yuwati T. W., Winarno B., Premono B. T., Lestari S., Ardhana A., Ramawati, Budiningsih K., Hidayat D. C. & Iqbal M., 2022 – Can we simultaneously restore peatlands and improve livelihoods? exploring community home yard innovations in utilizing degraded peatland. Land, 11 (2), 150. DOI: https://doi.org/10.3390/land11020150

Sasidharan R., Bailey-Serres J., Ashikari M., Atwell B. J., Colmer T. D., Fagerstedt K., Fukao T., Geigenberger P., Hebelstrup K. H., Hill R. D., Holdsworth M. J., Ismail A. M., Licausi F., Mustroph A., Nakazono M., Pedersen O., Perata P., Sauter M., Shih M.-C., Sorrell B. K., Striker G. G., van Dongen J. T., Whelan J., Xiao S., Visser E. J. W., Voesenek L. A. C. J., 2017 – Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 214 (4): 1403-1407. <https://doi.org/10.1111/nph.14519> DOI: https://doi.org/10.1111/nph.14519

Sauter M., 2013 – Root responses to flooding. Current Opinion in Plant Biology, 16 (3): 282-286. <https://doi.org/10.1016/j.pbi.2013.03.013> DOI: https://doi.org/10.1016/j.pbi.2013.03.013

Sharma S., Sharma J., Soni V., Kalaji H. M. & Elsheery N. I., 2021 – Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants. Journal of Water and Land Development, 49 (IV-VI): 16-28. <https://doi.org/10.24425/jwld.2021.137092>

Shaw R. E., Meyer W. S., McNeill A. & Tyerman S. D., 2013 – Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models. Crop and Pasture Science, 64 (6): 549-562. <https://doi.org/10.1071/CP13080> DOI: https://doi.org/10.1071/CP13080

Sinaga R., 2020 – Physiological response of three varieties of cayenne pepper (Capsicum frutescens) to decreased water availability. International Journal of Ecophysiology, 2 (2): 129-136. <https://doi.org/10.32734/ijoep.v2i02.4684> DOI: https://doi.org/10.32734/ijoep.v2i02.4684

Sreeratree J., Butsayawarapat P., Chaisan T., Somta P. & Juntawong P., 2022 – RNA-seq reveals waterlogging-triggered root plasticity in Mungbean associated with ethylene and jasmonic acid signal integrators for root regeneration. Plants, 11 (7), 930. <https://doi.org/10.3390/plants11070930> DOI: https://doi.org/10.3390/plants11070930

Steffens D., Hutsch B. W., Eschholz T., Losak T. & Schubert S., 2005 – Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil and Environment, 51 (12): 545-552. DOI: https://doi.org/10.17221/3630-PSE

Striker G. G., 2012 – Time is on our side, the importance of considering a recovery period when assessing flooding tolerance in plants. Ecological Research, 27 (5): 983-987. <https://doi.org/10.1007/s11284-0120978-9> DOI: https://doi.org/10.1007/s11284-012-0978-9

Sukarman M. A. & Purwanto S., 2018 – Modifikasi metode evaluasi kesesuaian lahan berorientasi perubahan iklim. [Modification of climate change-oriented land suitability evaluation methods]. Jurnal Sumberdaya Lahan, 12 (1): 1-11. DOI: https://doi.org/10.21082/jsdl.v12n1.2018.1-11

Tan X. & Zwiazek J. J., 2019 – Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS One, 14 (2), e0212059. <https://doi.org/10.1371/journal.pone.0212059> DOI: https://doi.org/10.1371/journal.pone.0212059

Tan X., Xu H., Khan S., Equiza M. A., Lee S. H., Vaziriyeganeh M. & Zwiazek J. J., 2018 – Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology, 227: 20-30. <https://doi.org/10.1016/j.jplph.2018.05.003> DOI: https://doi.org/10.1016/j.jplph.2018.05.003

Tong C., Hill C. B., Zhou G., Zhang X. Q., Jia Y. & Li C., 2021 – Opportunities for improving waterlogging tolerance in cereal crops–physiological traits and genetic mechanisms. Plants, 10 (8), 1560. <https://doi.org/10.3390/plants10081560> DOI: https://doi.org/10.3390/plants10081560

Voesenek L. A. & Bailey-Serres J., 2015 – Flood adaptive traits and processes: an overview. New Phytologist, 206 (1): 57-73. <https://doi.org/10.1111/nph.13209> DOI: https://doi.org/10.1111/nph.13209

Wellburn A. R., 1994 – The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144 (3): 307-313. <https://doi.org/10.1016/S01761617(11)811922> DOI: https://doi.org/10.1016/S0176-1617(11)81192-2

Wijaya C. H., Harda M. Rana M. H. & Rana B., 2020 – Diversity and potency of Capsicum spp. grown in Indonesia. In: Capsicum. Dekebo A. (ed.). IntechOpen, USA. <https://doi.org/10.5772/intechopen.92991>

Yamauchi T., Shimamura S., Nakazono M. & Mochizuki T., 2013 – Aerenchyma formation in crop species: A review. Field Crops Research, 152: 8-16. <https://doi.org/10.1016/j.fcr.2012.12.008> DOI: https://doi.org/10.1016/j.fcr.2012.12.008

Yamauchi T., Abe F., Kawaguchi K., Oyanagi A. & Nakazono M., 2014 – Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Plant Signaling Behavior, 9 (4), e28506. <https://doi.org/10.4161/psb.28506> DOI: https://doi.org/10.4161/psb.28506

Yamamoto S., Djarwaningsih T. & Wiriadinata H. 2013 – Capsicum pubescens (Solanaceae) in Indonesia: its history, taxonomy, and distribution. Economic Botany, 67: 161-170. <https://doi.org/10.1007/s12231013-9230-y> DOI: https://doi.org/10.1007/s12231-013-9230-y

Yuan L.-B., Dai Y.-S., Xie L.-J., Yu L.-J., Zhou Y., Lai Y.-X., Yang Y.-C., Xu L., Chen Q.-F. & Xiao S., 2017 – Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiology, 173 (3): 1864-1880. <https://doi.org/10.1104/pp.16.01803> DOI: https://doi.org/10.1104/pp.16.01803

Yuan L.-B., Chen M.-X., Wang L.-N., Sasidharan R., Voesenek L. A. C. J. & Xiao S., 2022 – Multi-stress resilience in plants recovering from submergence. Plant Biotechnology Journal, 21 (3): 466-481. <https://doi.org/10.1111/pbi.13944> DOI: https://doi.org/10.1111/pbi.13944

Zhang J., Yin D. J., Fan S.X., Li S. G. & Dong L., 2019 – Modulation of morphological and several physiological parameters in sedum under waterlogging and subsequent drainage. Russian Journal of Plant Physiology, 66 (2): 290-298. <https://doi.org/10.1134/S1021443719020183> DOI: https://doi.org/10.1134/S1021443719020183

Zhang R. D., Zhou Y. F., Yue Z. X., Chen X. F., Cao X., Xu X. X., Xing Y. F., Jiang B., Ai X. Y. & Huang R. D., 2019 – Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica, 57 (4): 1076-1083. DOI: https://doi.org/10.32615/ps.2019.124

Zhang X., Shabala S., Koutoulis A., Shabala L., Johnson P., Hayes D., Nichols D. S. & Zhou M., 2015 – Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant and Soil, 394 (1-2): 355-372. <https://doi.org/10.1007/s11104015-2536-z> DOI: https://doi.org/10.1007/s11104-015-2536-z

Zhao N., Li C., Yan Y., Cao W., Song A., Wang H., Chen S., Jiang J. & Chen F., 2018 – Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. International journal of molecular sciences, 19 (5), 1455. <https://doi.org/10.3390/ijms19051455> DOI: https://doi.org/10.3390/ijms19051455

Zhou L., Cheng W., Hou H., Peng R., Hai N., Bian Z., Jiao C. & Wang C., 2016 – Antioxidative responses and morpho-anatomical alterations for coping with flood-induced hypoxic stress in grass pea (Lathyrus sativus L.) in comparison with pea (Pisum sativum). Journal of Plant Growth Regulation, 35 (3): 690-700. <https://doi.org/10.1007/s00344016-9572-7> DOI: https://doi.org/10.1007/s00344-016-9572-7

Saptiningsih, E., Darmanti, S., & Setiari, N. (2023). Tolerance of <i>Capsicum frutescens</i> L. (Solanales: Solanaceae) to the duration of waterlogging and impact on the post-waterlogging and recovery periods. Natural History Sciences, 10(2). https://doi.org/10.4081/nhs.2023.641

Downloads

Download data is not yet available.

Citations