Marine and freshwater taxa: some numerical trends

  • Semyon Ya. Tsalolikhin Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation.
  • Aldo Zullini | Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy.


Most of the freshwater fauna originates from ancient or recent marine ancestors. In this study, we considered only completely aquatic non-parasitic animals, counting 25 phyla, 77 classes, 363 orders for a total that should include 236,070 species. We divided these taxa into three categories: exclusively marine, marine and freshwater, and exclusively freshwater. By doing so, we obtained three distribution curves which could reflect the marine species’ mode of invasion into continental waters. The lack of planktonic stages in the benthic fauna of inland waters, in addition to what we know about the effects of the impoundment of epicontinental seas following marine regressions, lead us to think that the main invasion mode into inland waters is more linked to the sea level fluctuations of the past than to slow and “voluntary” ascents of rivers by marine elements.



PlumX Metrics


Download data is not yet available.


Adamowicz S.J., Menu-Marque S., Halse S.A., Topan J.C., Zemlak T.S., Herbert P.D.N., & Witt J.D.S., 2010 – The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): a history of habitat shifts. Molecular Phylogenetics and Evolution, 55: 418-430. DOI:

Ashelby C.W., Page T.J., De Grave S., Huges J.M., Johnson M.L., 2012 – Regional scale speciation reveals multiple invasions of freshwater in Palaemoninae (Decapoda). Zoologica Scripta, 41: 293-306. DOI:

Balian E.V., Lévêque C., Segers H., Martens K. eds., 2008 – Freshwater animal diversity assessment. Hydrobiologia, 595: 1- 637. DOI:

Bij de Vaate A., Jazdzewski K., Katelaars H.A.M., Gollash S., & Van der Velde G., 2002 – Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 59: 1159-1174. DOI:

Birstein Ya.A., 1949 – Some problems of the origin and evolution of the freshwater fauna (in Russian). Uspechi Sovr. Biologii, 27: 119-140.

Boucot A.J, 1975 – Evolution and extinction rate controls. Elsevier, Amsterdam.

Boxhall G.A. & Jaume, D., 2000 – Making waves: the repeated colonization of fresh water by Copepod Crustaceans. Advances in Ecological Research, 31: 61-79. DOI:

Budd G.E., 2003 – The Cambrian fossil record and the origin of the phyla. Integrative and Comparative Biology, 43: 157-165. DOI:

Carrete Vega G. & Wiens J.J., 2012 – Why are there so few fish in the sea? Proceedings of the Royal Society, B, 279: 2323-2329. DOI:

Danielpol D.L., 1980 – An essay to assess the age of the freshwater interstitial ostracods in Europe. Bijdragen tot de Dierkunde, 50: 243-291. DOI:

De Deckker P., Chivas A.R., & Shelley M.G., 1988 – Paleoenvironment of the Messinian Mediterranean ‘Lago Mare’ from strontium and magnesium in ostracode shells. Palaios, 3: 352-358. DOI:

de Queiroz K., Gauthier J., 1990 – Phylogeny as a central principle in taxonomy: phylogenetics definitions of taxon names. Systematic Zoology, 39: 307-322. DOI:

de Queiroz K., Gauthier J., 1994 – Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution, 9: 27-31. DOI:

Eldredge N. & Gould J.S., 1972 – Punctuated equilibria: an alternative to phyletic gradualism. In: T.J.M. Schopf (ed.). Models in Paleobiology. San Francisco, Freeman Cooper, p. 82-115. DOI:

Ferris V.R., Ferris J.M., 1979 – Thread worms (Nematoda). In: Hart C.W. & Fuller S.L.H. (eds.). Pollution ecology of estuarine invertebrates, Academic Press, New York, 1-33. DOI:

Gaston K.J., 2000 – Biodiversity: higher taxon richness. Progress in Physical Geography, 24: 117-127. DOI:

Gauthier J., Kluge A.G., Rowe T., 1988 – Amniote phylogeny and the importance of fossils. Cladistics, 4: 105-209. DOI:

Gensel,P.G., 2008 – The earliest land plants. Annual Review of Ecology, Evolution, and Systematics, 39: 459-477. DOI:

Giere O., 2009 – Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin.

Gleick P.H. ed., 1993 – Water in crisis: a guide to the world’s freshwater resources. Oxford University Press.

Haq B.U., Hardenbol,J., Vail P.R., 1987 – Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1166. DOI:

Heip C., Vincx M., Vranken G., 1985 – The ecology of marine nematodes. Oceanography and Marine Biology – An Annual Review, 23: 399-489.

Hou Z. & Li S., 2017 – Tethyan changes shaped aquatic diversification. Biological Reviews, 23 pp. doi: 10.1111/brv.12376. DOI:

Jensen P., 1987 – Feeding ecology of free-living aquatic nematodes. Marine Ecology - Prog. Ser., 35: 187-196. DOI:

Johnson L.E. & Carlton J.T., 1996 – Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology, 77: 1686-1690. DOI:

Kooistra W.H.C.F, Gersonde R., Medlin L.K. & Mann, D.G., 2007 – The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski, P.G., & Knoll A.H. (eds.). Evolution of Primary Producers in the Sea. Academic Press, Cambridge. pp 207-249. DOI:

Kültz D., 2015 – Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, 218: 1907-1914. DOI:

Logares R., Brate J., Bertilsson S., Clasen J.L., Shalchian-Tabrizi K. & Rengefors K., 2009 – Infrequent marine-freshwater transitions in the microbial world. Trends in Microbiology, 17: 414-422. DOI:

Logares R, Shalchian-Tabrizi K., Boltovskoy A., & Rengefors K., 2007 – Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions. Molecular Phylogenetics and Evolution, 45: 887-903. DOI:

Lukeneder S., Zuschin M., Harzhauser M. & Mandic O., 2011 – Spatiotemporal Signals and Palaeoenvironments of Endemic Molluscan Assemblages in the Marine System of the Sarmatian Paratethys. Acta Palaeontologica Polonica, 56: 767-784. DOI:

Maestre F.T., Callaway R.M., Valladares F., Lortie C.J., 2009 – Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97: 199-205. DOI:

Mamos T., Wattier R., Burzynski A. & Grabowski M., 2016 - The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Molecular Ecology, 15 pp. doi: 10.1111/mec.13499 DOI:

Martens K., Schön I., Meisch C. & Horne D.J. 2008 – Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. In: Balian, E.V., Lévêque C., Segers, H., & Martens, K. (eds.). Freshwater Animal Diversity Assessment. Hydrobiologia, 595, 185-193.

McMahon R.F., 1996 – The physiological ecology of zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist, 36: 339-363. DOI:

Mora C., Tittensor D.P., Adl S., Simpson A.G.B. & Worm B., 2011 – How many species are there on earth and in the ocean? PLOS Biology <>.

Müller R.D., Sdrolias M., Gaina C., Steinberger B. & Heine C., 2008 – Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357-1362. DOI:

Murphy N.P. & Austin C.M., 2005 – Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): biogeography, taxonomy and the convergent evolution of abbreviated larval development. Zoologica Scripta, 34: 187-197. DOI:

Nesemann, H., Pöckl, M., & Wittmann, K.J., 1995 – Distribution of epigean Malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Miscellanea Zoologica Hungarica, 10: 49-68.

Penzo E., Gandolfi G., Bargelloni L., Colombo L. & Patarnello T., 1998 – Messinian salinity crisis and the origin of freshwater lifestyle in Western Mediterranean gobies. Molecular Biology and Evolution, 15: 1472-1480. DOI:

Poinar G.O. Jr., 2011 – The Evolutionary History of Nematodes. As revealed in stone, amber and mummies. Nematology Monographs and Perspectives, Brill publ., vol. 9. DOI:

Remane A., Schlieper C., 1972 – Biology of brackish water. Die Binnengewässer, vol. 25.

Rouch R., Danielpol D.L., 1987 – L’origine de dal faune aquatique souterraine, entre le paradigm du refuge et le modèle de la colonisation active. Stygologia, 3: 345-372.

Suchéras-Marx B., Escarguel G., Ferreira J. & Hammer Ø., 2019 – Statistical confidence intervals for relative abundances and abundance-based ratios: simple practical solutions for an old overlooked question. Marine Micropaleontology, vol. 151. doi:10.1016/j.marmicro.2019.101751. DOI:

Tsalolikhin S.Ya., 1992 – From biological diversity to historic biocoenology (in Russian). In: Biologiceskoe Rasnobraznie: podchodi k izucenio i sochraneneiu. Akademia Nauk, 101-110.

Williams P.H., Gaston K.J. & Humphries C.J., 1997 – Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proceedings of the Royal Society B: Biological Sciences, 264: 141-148. DOI:

Yamanoue Y., Miya M., Doi H., Mabuchi K., Sakai H., Nishida M., 2011 – Multiple Invasions into Freshwater by Pufferfishes (Teleostei: Tetraodontidae): A Mitogenomic Perspective. PLoS ONE 6(2): e17410. DOI:

Zhi-Qiang Z, 2013 – Animal biodiversity: an update of classification and diversity in 2013. In: Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (addenda 2013). Zootaxa, 3703: 1-82. DOI:

Adaptation, freshwater biota, sea biota, taxonomic levels
  • Abstract views: 293

  • PDF: 237
How to Cite
Tsalolikhin, S. Y., & Zullini, A. (2019). Marine and freshwater taxa: some numerical trends. Natural History Sciences, 6(2).